Dual-RICH simulations (Update)

Alessio Del Dotto for the EIC PID meeting 9-28-2015

MEIC detector concept for EIC

MEIC IP1 detector

Dual-radiator RICH:

- Proximity configuration: excluded, can not garantee momentum coverage up to 50 GeV
- Outward-reflecting mirror configuration: under study

MEIC π/K/p ID up to 50 GeV

- TOF in both endcaps and barrel
- DIRC in barrel (compact "camera")
- Dual-radiator RICH in hadron endcap
- Modular aerogel RICH in electron endcap

Focusing configuration – mirror (ideal)

Main error contributions:

- Chromatic
- emission λ uncertainty

Aerogel

- Pixel-size uncertainty
- pixel detector granularity

Gas

Scattering of light
 λ in the range [300,500] nm, UV light filtered

Chromatic error (1 p.e.):

Pixel error (1 p.e.):

$$\sigma_{\theta_c}^{\lambda} = \frac{dn_a}{d\lambda} \frac{\beta}{\sin \theta_c} \frac{\Delta \lambda}{\sqrt{12}}$$

$$\sigma_{\theta_c}^s = \frac{n_g \cos^3 \theta_r}{f} \frac{s}{\sqrt{6}}$$

$$\sigma_{\theta_c}^{\lambda} = \frac{dn_g}{d\lambda} \frac{1}{n_g^2 \beta \sin \theta_c} \frac{\Delta \lambda}{\sqrt{12}}$$

$$\sigma_{\theta_c}^s = \frac{1}{f n_g^2} \frac{s}{\sqrt{6}}$$

Mirror focusing – chromatic error

Geometry independent error: does not depend on the focal length

$$n_a^2(\lambda) = 1 + \frac{0.096\lambda^2}{\lambda^2 - 84^2}$$
 $<\lambda> = 400 \ nm \ = 5 \ GeV$

M. Contalbrigo talk at RICH 2013 (http://rich2013.kek.jp/program.html)

Mirror focusing – pixel error

 $pixel\ size:\ s=3\ mm$

- In a spherical mirror configuration, the error due to the magnetic bending has to be added to the chromatic and pixel size errors
- Others errors that have to be added are:
 - σ_{emission} (if the mirror is tilted/aberrations) \rightarrow geometry dependent
 - σ_{track} (due to the error on the track)
 - σ_{magnetic} (due to the bending of the track)

Field effect – distortion for RICH

- RICH is in magnetic field
- Effect estimated using a new field mesh (map version 3) of 5 cm step in (z,r), a mesh of 1 cm step in (z,r) has been obtained interpolating the original map v3 (map v3 by Paul Brindza)
- The bending of the trajectory has been evaluated using a semianalytical method (the same used in the past talk)

Field effect – distortion for RICH

Field components along the track for $\eta = 3$

 θ is the bending angle of the tangent versor along the track in z = [220,385] cm (RICH position)

RMS = $\Delta\theta$ --> error on the Cherencov angle due to the bending of the track

Field effect – distortion for RICH

 $\Delta\theta$ vs η for three different momenta of the particle

Field effect – radius+- 1 σ effect

RICH ring error

$$\delta R = \Delta \theta / \sqrt{2N_{\gamma}} \cdot (10 \ GeV/c)/p$$

 $\Delta\theta$ for p = 30 GeV/c

Mean number of p.e. used in the formula: $C_4F_{10}
ightarrow N_\gamma \sim 25$

$$CF_4 o N_\gamma \sim 15$$

Field design – important parammter

- The mean value of the component of B perpendicular to the track at a given angle is strictly proportional the the bending error on the Cherenkov angle.
- Two ways to reduce this error:
 - reduce the magnitude of the field
 - do the field as parallel/antiparallel as possible to the track in the RICH region

Towards a realistic mirror configuration

- A 2D optical ray tracing software has been developed (based on C++)
- The reflection of the Cherenkov photons can be simulated for different radiators and different mirror configurations
- The photon-detector position can be studied in relation to the focal plane

Comments and next developments

- With field map version 3, the error on the Cherencov ring has a small but not negligible impact on the Cherencov angle
- To minimize the field impact in the RICH region, the component of the field perpendicular to the track should be minimized
- Next step: use the ray tracer to study useful configurations:
 - Parameters and number of mirrors
 - Position of the photon-detector/focal plane
- In our case one has to add also the error due to the track bending to the usual total error for a mirror configuration

$$\sigma_{\theta_c}^{1~p.e.} = \sqrt{\sigma_{chromatic}^2 + \sigma_{pixel}^2 + \sigma_{aberration}^2 + \sigma_{track}^2 + \sigma_{magnetic}^2}$$

 The aberration and track has to be evaluated, when good configuration for the mirror(s) will be fixed